Chemical Resistance Reference Chart

This chart provides a guideline for the chemical resistance of materials used for vials and closures. Because so many factors can affect chemical resistance, it may be necessary to test your product under your actual conditions of use.

Effects of Chemicals on Plastics

Chemicals can affect the strength, flexibility, surface appearance, color, dimensions, and weight of a plastic. These changes are caused by (1) an attack on the polymer chain resulting in oxidation, reaction of functional groups, and depolymerization; (2) dissolution in a solvent and solvent absorption or permeation that causes softening and swelling; and (3) stress cracking from a "stress-cracking agent."

Environmental stress cracking is the failure of a plastic in the presence of certain types of chemicals, but it is not a result of a chemical attack. Simultaneous presence of three factors causes stress cracking: tensile stress in the plastic, its inherent stress-cracking susceptibility, and a stress-cracking agent. Common stress-cracking agents are detergents, surface active chemicals,

lubricants, oils, ultrapure water, and plating additives such as brighteners and wetting agents. Relatively small concentrations of stress-cracking agent may be sufficient to cause cracking.

Mixing and/or diluting certain chemicals in plastic labware can be potentially hazardous. The reactive combination of compounds of two or more classes may cause a synergistic or undesirable chemical effect, resulting in an increased temperature that can affect chemical resistance (as temperature increases, resistance to attack decreases), causing product failure. Other factors that also affect chemical resistance include pressure, internal or external stresses (e.g., centrifugation), length of exposure, and concentration of the chemical. Always pre-test your specific usage and follow correct lab safety procedures.

Attention: Please be aware that, although several polymers may have excellent resistance to various flammable organic chemicals and solvents, OSHA H CFR 29 1910.106 for flammable and combustible materials or other local regulations may restrict the volume of solvents that may legally be stored in an enclosed area.

Effects of Chemicals on Glass

Clear and amber borosilicate glass exhibit a high degree of chemical resistance with a few exceptions: Some chemicals can etch the surface of glass. Surface etching does not usually affect the dimensional characteristics of glass, but it can release chemical components into the sample solution.

Physical Characteristics of Plastic Resin and Septa

Code	Description	Appearance	Temp MAX °C	Temp MIN °C	Autoclavable	Dry Heat	Gamma	Microwavable	Ethylene Oxide	Analytical Purity	Fragmentation*	Hardness⁺	Resealability [‡]
HDPE	High-density polyethylene	Opaque	120	-35	No	No	Yes	Yes	Yes	Method Dependent	Medium	Hard	No resealability
LDPE	Low-density polyethylene	Translucent	100	-40	No	No	Yes	Yes	Yes	Method Dependent	Low	Medium hard	No resealability
TPX	Polymethylpentene	Transparent	175	0	Yes	No	Yes	Yes	Yes	Method Dependent	Low	Very hard	N/A
PP	Polypropylene	Translucent	135	-20	Yes	No	No	Yes	Yes	Method Dependent	Low	Medium hard	No resealability
PTFE	Polytetrafluoroethylene	White	260	-200	Yes	Yes	Yes	Yes	Yes	Very high	Low	Very hard (very thin)	No resealability
RR	RedRubber/PTFE	Red/ivory	110	-30	No	No	No	No	No	Medium	Medium	Medium hard	Medium
Butyl	Gray Butyl Rubber	Opaque gray	125	-20	Yes	No	Yes	Yes	Yes	Method Dependent	Low to medium	Soft to medium	Highly resealable
T/S	Silicon/PTFE	White/red	200	-60	Yes	Yes	Yes	Yes	Yes	High	Low to medium	Soft	Highly resealable
T/S/T	PTFE/Silicon/PTFE	Red/white/red	200	-60	Yes	Yes	Yes	Yes	Yes	High	Very low	Soft	Good resealability
	Viton®	Black	230	-30	Yes	Yes	Yes	Yes	Yes	Medium	Medium	Hard	Low to medium

^{*} Due to hardness and molecular structure (coring)

[†] Needle penetration

[‡] In case of multiple injections